Story time in math class!

I love teaching math with stories. Not only do I value the authentic nature of solving math problems from books, I love how quickly they can engage a whole class. I find it so rewarding when a child makes the connection between the story and the math involved. I taught with a book the other day in kindergarten and all of us laughed when one kid yelled out, “hey, this is just like math!”, not making the connection that I was there to teach math!

My pet peeve, is that sometimes it is so difficult to find a book that teaches what I want to teach, when I want to teach it,  in the way that I want to teach it!

I give you Exhibit A!

book-req

Even after exhaustive on-line searches, a plethora of librarian requests, asking all my mathy friends on twitter and begging Marilyn Burns to write another book…I still find it hard to get that picture book that would explain the concept I want, perfectly. I’ve even considered asking my friend, who says that she has always wanted to write a kids book, to help me! (Shar expect a phone-call!). I could tell her the concept, she could write the story, and we could get someone else to do the pictures so we don’t scare the children!

I give you Exhibit B!

img_1388

This is a dog…in case you were wondering!

So when I do find the perfect book, I have to share it with everyone! Last week, I began a kindergarten class with the book called: “One is a snail Ten is a crab – A counting by feet book”, by April and Jeff Sayre and the kids loved it! I was getting so tired of all the books that predictably count up by one or down by one, and although this book does do that, it is a great book to use for showing different ways to compose numbers.

I give you Exhibit C!

onesnail

One is a snail, ten is a crab by April and Jeff Sayre

I would read a page, and then ask the students so, “What is 6”. Here are the responses I got:

“An insect!”

“ Six snails!”

“ A dog and a person!”

And the really clever individual: “3 people!”

Without knowing it, I had generated a number talk and every time someone offered a different way of making 6, all the kids were amazed! What’s great about the book, is the authors mix up their ways of composing the number too! Sometimes it is just one thing (i.e. a spider), and other times it is a combination of things (i.e. six snails)! This is a great book for those kids who are ready to step beyond the predictable patterns normally found in books.

Here’s Rory and Oliver trying to figure out what comes next. They obviously need more exposure with crabs!

Next week, I am going to use the same book for grade one in order to demonstrate equivalence. “Oh – so a dog and a person (4+2) is the same as six snails (1+1+1+1+1+1).” Since our school just bought a whole bunch of cuisenaire rods, I’m going to have the students use cuisenaire rods to record their responses.

I give you Exhibit D! (In class, we will use the concrete rods and a white board to record our work).

file_000-1

Using cuisenaire rods to demonstrate equivalence.

If the teachers have time, I think we’ll extend it even further by having them make mobiles where one side is equal to the other side! I’m so excited! And what inspired me? A book!

Needless to say, I’m not the only one who appreciates this book. I stopped at page 10 (“ten is a crab”) for my K and 1 classes, but the book continues and could be used for many number concepts in K-2. Even Rory wanted to continue reading and as a result, got to demonstrate his new math milestone: counting by tens to one hundred!

If you search the net, you will find a lot of resources to help you use this book in your classroom as well.

Click here  for some suggestions!

Meanwhile, do you have other great books for the math classroom? Let me know in the comments section below!

Back to top

 

Digits versus Numbers

Rory was playing the Osmo Numbers Game (he was pretty spoiled by Santa this year!), and he was getting really frustrated because the game wanted him to make the number 12, and he kept doing 1 and 2 (instead of 10 and 2) and not getting it right. This led me to wonder how I could help him understand the difference between digits and their place in numbers.

osmo1

Oliver learning numbers with Osmo.

Rory is in kindergarten and has no understanding of place value yet, although he should start learning about numbers greater than 10, in school soon. To help him realize that 12 is different from 1 and 2, he needs help conceptualizing the idea that one 10 is different from one 1.

“They must be able to conceptualize place value; the understanding that the same numeral represents different amounts depending on which position it is in.” Charlesworth, 2012.

osmo2

Rory trying to make 14 with the digits 1 and a 4; then making 14 by adding 10 and some more.

Knowing the difference between digits and numbers is a developmental milestone and comes with a strong understanding of place value. I often have primary teachers ask, if I have any ideas on how to make this difference more apparent, and I do!

There are 3 main strategies you can use to develop this understanding:

1) Concrete representation of numbers

Use manipulatives to build the numbers. Showing the difference between 1 and 2 and 10 and 2 using a rekenrek, counters or unifix cubes clearly demonstrates that the digit in the ones position is different from the digit in the tens position. (If this doesn’t make sense, watch the video below!) Grouping or bundling things into groups of 10, or using base 10 blocks, is the best way for students to visualize the difference. Make sure you give lots of time for them to practice counting objects and grouping them into bundles of 10.

“A set of ten should figure prominently in the discussion of the teen numbers” Van de Walle, 2014.

2) Patterns

Write the numbers vertically and ask the students to notice any patterns they see. You will be surprised at your student’s or child’s ability to see that numbers repeat from 0-9, or that all the teen numbers have a one in front of it. Bring in the 100 chart! Now you’ve got a starting place for inquiry…why do they all have a one in front? Your goal is to have students come away with the understanding that digits mean different things when they are in different places.

3) Addition

In order to build number sense, you want students to think flexibly about numbers. In other words, can they decompose a number and can they do it in more than one way? When introducing numbers greater than 10, you want your child to decompose them into 10 and some more. This is another reason I love the rekenrek, for its amazing ability to show a number as 10 and some more.

“Mapping the teens number names to a ten and one structure is an important idea.” Van de Walle, 2014.

Counters are great too because they give students practice creating that group of 10: count out 13 ones, but if you group your tens…you have one ten and 3 more. Representing this as an addition sentence is another great connection for your kids to make and is the beginning of learning signs and symbols to represent math problems.

Here is a video of Rory and I learning about numbers greater than 10. Watching it back, I would have done a few things differently (like have my husband look after Oliver!), but I still think it gives you an idea of the 3 strategies in action (concrete manipulatives, patterns and addition)!

Do you have other suggestions of how to build the understanding that digits are different from numbers? I’d love to hear them! Please share them in the comments section below.

Back to top